CPSC 601 | Project Final Presentation

Implementing Atlas of Connectivity Maps for ICON Grid

Mohammad Imrul Jubair
mohammadimrul.jubair@ucalgary.ca

Outline

- Computer-based globe model
- Study on ICON Grid
- ICONverter: Implementing Atlas of Connectivity Maps for ICON Grid
- visICON

Computer-based globe model

- Representation of geospatial data on digitized globe system \checkmark e.g. ICON globe model
- Data is obtained from various kind of data acquisition process
- Important in Meteorology
\checkmark e.g. prediction of climate performance for future.

Computer-based globe model (cont.....)

- Discretizing Earth's surface into different geometric entities:

Computer-based globe model (cont.....)

- Discretizing Earth's surface into different geometric entities:
\checkmark vertices

Computer-based globe model (cont.....)

- Discretizing Earth's surface into different geometric entities:
\checkmark vertices, triangles

Computer-based globe model (cont.....)

- Discretizing Earth's surface into different geometric entities:
\checkmark vertices, triangles, hexagons etc.

Computer-based globe model (cont.....)

- Different Digital Earth systems use different geometric entity or entitles to store geospatial data
\checkmark E.g. - at vertices, at centroids of the triangle, at midpoint of edges etc.

M vertices ※ centroids
W edge midpoints

Computer-based globe model (cont.....)

- Data can be visualized with proper colormap applied on these geometric entities

Data Structure for Geometric Entity

- Storing Geometric information into a data structure -
\checkmark Array or List

Data Structure for Geometric Entity (cont.....)

- Why Data Structure is important -
\checkmark Accessing neighborhood

Data Structure for Geometric Entity (cont.....)

- Why Data Structure is important -
\checkmark Accessing neighborhood, multi-resolutions etc.

The ICON Grid

- ICOsahedral Non-hydrostatic model
\checkmark Joint project of German Weather Service (DWD) and Max-Planck-Institute for Meteorology (MPI-M)
\checkmark Used for numerical weather prediction as well as for future climate predictions.

Study on ICON Grid

- Can be described with three descriptors:
\checkmark Dimension :
- Specifies the size of data and variables
\checkmark Attributes:
- Metadata, relation between variables
\checkmark Variables:
- Holds data and Geographic coordinates (latitude and longitude) of geometric entity

The ICON Grid (cont.....)

Study on Variables : -

clon, clat:
geographic coordinates of the center of a triangular cell

The ICON Grid (cont.....)

Study on Variables : -

clon, clat:
geographic coordinates of the center of a triangular cell
clon_vertices, clat_vertices:
geographic coordinates of three
 edge vertices of a triangular cell

The ICON Grid (cont.....)

Study on Variables : -

vlon, vlat:
纪 geographic coordinates of vertices

The ICON Grid (cont.....)

Study on Variables : -

vlon, vlat:
geographic coordinates of vertices
vlon_vertices, vlat_vertices:
geographic coordinates of six vertices of hexagons (six neighboring triangle centers)

The ICON Grid (cont.....)

Study on Variables : -

vlon, vlat:
纪 geographic coordinates of vertices
vlon_vertices, vlat_vertices:
geographic coordinates of six vertices of hexagons (six neighboring triangle centers)

The ICON Grid (cont.....)

Study on Variables : -

elon, elat:
约 geographic coordinates of edge midpoint vertices

The ICON Grid (cont.....)

Study on Variables : -

elon, elat:
geographic coordinates of edge midpoint vertices
elon_vertices, elat_vertices:
N geographic coordinates of four neighboring vertices of edge midpoint

The ICON Grid (cont.....)

Study on Variables : -

elon, elat:
geographic coordinates of edge midpoint vertices
elon_vertices, elat_vertices:
geographic coordinates of four neighboring vertices of edge midpoint ${ }^{1}$

The ICON Grid (cont.....)

Study on Data : -

Data stored in -

- triangles

The ICON Grid (cont.....)

Study on Data : -

Data stored in -

- triangles
- hexagons

The ICON Grid (cont.....)

Study on Data : -

Data stored in -

- triangles
- hexagons
- rectangle

The ICONverter

- ICON + Converter
- Storing geometric layout of ICON grid (vertices)into array structure

The ICONverter : Overview

The ICONverter : Conversion Pipeline

The ICONverter : Visualization Pipeline

The ICONverter : Initial Icosahedron

Building initial Earth skeleton (Icosahedron) :

- Irregular hexagons (pentagons) is formed while covering Earth sphere with hexagonal cells
- There are total 12 such pentagons on the entire sphere

The ICONverter : Initial Icosahedron

Building initial Earth skeleton (Icosahedron) :

- Irregular hexagons (pentagons) is formed while covering Earth sphere with hexagonal cells
- There are total 12 such pentagons on the entire sphere
- 12 pentagons are pointing to the 12 vertices of the Icosahedron

The ICONverter : Initial Icosahedron

Building initial Earth skeleton (Icosahedron) :

- Finding pentagon:

Repeated values for last two vertices in (vlon_vertices, vlat_vertices) entries

	1	2	3	4	5	6
1	1.4217	1.4665	1.3941	1.3045	1.3216	1.3216
2	0.0725	-0.0277	-0.0895	-0.0277	0.0725	0.0725
3	4.4390	4.4390	4.4838	4.5115	4.4838	4.4838
4	-3.5603	-3.5774	-3.6499	-3.6775	-3.6222	-3.6222
5	-3.6222	-3.6775	-3.6499	-3.5774	-3.5603	-3.5603
6	1.3217	1.3046	1.3941	1.4666	1.4218	1.4218
7	3.6499	3.6775	3.6222	3.5603	3.5774	3.5774
8	-1.3941	-1.3046	-1.3217	-1.4218	-1.4666	-1.4666
9	-4.5115	-4.4838	-4.4390	-4.4390	-4.4838	-4.4838
10	-1.3941	-1.4666	-1.4218	-1.3217	-1.3046	-1.3046
11	3.6499	3.5774	3.5603	3.6222	3.6775	3.6775
12	0.0277	0.0896	0.0277	-0.0725	-0.0725	-0.0725

The ICONverter : Initial Icosahedron

Building initial Earth skeleton (Icosahedron) :

The ICONverter : Diamonds from Icosahedron

- Each diamond can be viewed as region on the Earth that covers a collection of geometric entities (vertices)

The ICONverter : Diamonds from Icosahedron

The ICONverter : Mirror-Array of Diamond

The ICONverter : Generating Array for the Preliminary Diamond

- The pentagons obtained from previous step gives us the vertices of the Icosahedron
- But we are not going to use it!

The ICONverter : Generating Array for the Preliminary Diamond

- The pentagons obtained from previous step gives us the vertices of the Icosahedron
- But we are not going to use it!
- Pentagons that are going to be used further are the five neighboring hexagons' centroids

The ICONverter : Generating Array for the Preliminary Diamond

- To find them, we can simply search for five triangles that have shared the Icosahedron vertices.
- Those five triangle will give us the usable pentagon

The ICONverter : Generating Array for the Preliminary Diamond

The ICONverter : Generating Array for the Preliminary Diamond
Initialize Columns and Rows

The ICONverter : Generating Array for the Preliminary Diamond

Initialize Columns and Rows

The ICONverter : Generating Array for the Preliminary Diamond

Initialize Columns and Rows

The ICONverter : Generating Array for the Preliminary Diamond

Initialize Columns and Rows

The ICONverter : Generating Array for the Preliminary Diamond

Initialize Columns and Rows

The ICONverter : Generating Array for the Preliminary Diamond
Initialize Columns and Rows

The ICONverter : Generating Array for the Preliminary Diamond

Initialize Columns and Rows

ICON
geographic coordinate pool

The ICONverter : Generating Array for the Preliminary Diamond

Initialize Columns and Rows

The ICONverter : Generating Array for the Preliminary Diamond
Initialize Columns and Rows

ICON
geographic coordinate pool

The ICONverter : Generating Array for the Preliminary Diamond
Initialize Columns and Rows

ICON
geographic coordinate pool

V1

The ICONverter : Generating Array for the Preliminary Diamond
Initialize Columns and Rows

ICON
geographic coordinate pool

The ICONverter : Generating Array for the Preliminary Diamond
Initialize Columns and Rows

ICON
geographic coordinate pool

V1	C	V2

The ICONverter : Generating Array for the Preliminary Diamond

Initialize Columns and Rows

ICON
geographic coordinate pool

V1	V3	V2

The ICONverter : Generating Array for the Preliminary Diamond

Initialize Columns and Rows

The ICONverter : Generating Array for the Preliminary Diamond

Initialize Columns and Rows

The ICONverter : Generating Array for the Preliminary Diamond

Filling up the entire array

- To find vertices at (i, j) position of the array, we can use ($\mathrm{i}-1, \mathrm{j}$) and ($\mathrm{i}-1, \mathrm{j}-1$)
- Search in the variable pool for a vertex of a triangle which has two vertices \mathbf{A} and \mathbf{B} and is not already in the array

The ICONverter : Generating Array for Other Diamonds

The ICONverter : Generating Array for Other Diamonds

The ICONverter : Generating Array for Other Diamonds

We have,
column vertex origin vertex
We can find diagonal vertex
O (not in D1 O)

The ICONverter : Generating Array for Other Diamonds

We have,
column vertex origin vertex diagonal vertex 0
We can find row vertex O

The ICONverter : Generating Array for Other Diamonds

column vertex
origin vertex
diagonal vertex 0
We can find row vertex O

The ICONverter : Generating Array for Other Diamonds

The ICONverter : Generating Array for Other Diamonds

The ICONverter : All the Arrays

Processing all the Diamonds

The ICONverter : Validation

THANK YOU

